A rational billiard flow is uniquely ergodic in almost every direction

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Every Ergodic Measure Is Uniquely Maximizing

Let Mφ denote the set of Borel probability measures invariant under a topological action φ on a compact metrizable space X. For a continuous function f : X → R, a measure μ ∈ Mφ is called f -maximizing if ∫ f dμ = sup{ ∫ f dm : m ∈Mφ}. It is shown that if μ is any ergodic measure in Mφ, then there exists a continuous function whose unique maximizing measure is μ. More generally, if E is a non-e...

متن کامل

Rings for which every simple module is almost injective

We introduce the class of “right almost V-rings” which is properly between the classes of right V-rings and right good rings. A ring R is called a right almost V-ring if every simple R-module is almost injective. It is proved that R is a right almost V-ring if and only if for every R-module M, any complement of every simple submodule of M is a direct summand. Moreover, R is a right almost V-rin...

متن کامل

Almost Every Domain is Universal

We endow the collection of ω-bifinite domains with the structure of a probability space, and we will show that in this space the collection of all universal domains has measure 1. For this, we present a probabilistic way to extend a finite partial order by one element. Applying this procedure iteratively, we obtain an infinite partial order. We show that, with probability 1, the cpo-completion ...

متن کامل

A Uniquely Ergodic Cellular Automaton

We construct a one-dimensional uniquely ergodic cellular automaton which is not nilpotent. This automaton can perform asymptotically infinitely sparse computation, which nevertheless never disappears completely. The construction builds on the self-simulating automaton of Gács. We also prove related results of dynamical and computational nature, including the undecidability of unique ergodicity,...

متن کامل

Almost every 2-SAT function is unate

Bollobás, Brightwell and Leader [2] showed that there are at most 2( n 2)+o(n 2) 2-SAT functions on n variables, and conjectured that in fact almost every 2-SAT function is unate: i.e., has a 2-SAT formula in which no variable’s positive and negative literals both appear. We prove their conjecture, finding the number of 2-SAT functions on n variables to be 2( n 2)+n(1 + o(1)). As a corollary of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of the American Mathematical Society

سال: 1985

ISSN: 0273-0979

DOI: 10.1090/s0273-0979-1985-15398-4